
13 PDEs on spatially bounded domains: ini-

tial boundary value problems (IBVPs)

A prototypical problem we will discuss in detail is the 1D diffusion equation

ut = Duxx 0 < x < l, t > 0 finite-length rod

u(x, 0) = f(x) 0 < x < l initial heat or mass distribution

Now we have boundaries at x = 0, l, so we need to discuss boundary condi-
tions (b.c.s) on the parabolic boundary (see figure 1). Using the language
of u representing temperature, so D = k/ρc, consider conditions at x = 0:

A. Prescribe the temperature at x = 0: u(0, t) = h(t)
This is a Dirichlet boundary condition, and often h(t) is a constant. If we
translate u so that u(0, t) = 0 in this case, then we have a homogeneous
Dirichlet b.c.

B. Prescribe the flux at x = 0: ∂u
∂x

(0, t) = h(t)
This is a Neumann boundary condition. With the rate of heat transfer being
−k ∂u

∂x
(remember, k is thermal conductivity), we could write −k ∂u

∂x
(0, t) = h.

The homogeneous Neumann b.c. is ∂u
∂x

(0, t) = 0, and is often interpreted
as the (perfectly) insulating b.c. (no heat flow through the boundary, or no
current through a conductor end).

C. Combination these conditions at x = 0: au(0, t) + b∂u
∂x

(0, t) = h(t)
This is the Robin boundary condition, or boundary condition of the
third kind. For example, if we think of Newton cooling at x = 0, we could
consider a model of imperfect insulating condition in the thermal energy con-
text. The constitutive law would be that the rate of heat loss flux density is
proportional to the difference in temperature of the material and its surround-
ings. So, the flux is J(0, t) = ±h(u(0, t)−us(t)), where h is a (constant) heat
transfer coefficient, and us is the temperature of the surroundings. The value
of h depends on the material, the type of material surroundings, the velocity
of fluid flow (the “wind-chill” factor), etc. The particular physical prob-
lem being modeled will determine the correct sign to use on the right-hand
side.Using Fourier’s law, we would have −k∂u(0, t)/∂x = ±h(u(0, t) − us).
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Figure 1: Domain of a 1D IBVP like (1), indicating the parabolic boundary.

A rescaling than gives au(0, t) + b∂u
∂x

(0, t) = h(t). Note that if a → 0, we
recover the Neumann b.c., while if b→ 0, then we recover the Dirichlet b.c.
Another way of viewing the Robin b.c. is that it typifies physical situations
where the boundary absorbs some, but not all, of the energy, heat, etc. being
transmitted through it.

D. Continuity boundary conditions:
Suppose we have two materials bonded tightly together at x = 0. Then
we might impose continuity of the temperature and its gradient across the
boundary. That is, we would consider the boundary condition being both
u(0−, t) = u(0+, t) and −k1ux(0−, t) = −k2ux(0+, t).

There are other possible boundary conditions. For example, the radiation
boundary condition, which is a nonlinear boundary condition, has the form,
in physical variables, of −kux(0, t) = εσ{u4(0, t)− u4

s}. We will not consider
this boundary condition in these Notes.
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Consider the parabolic (heat) problem
ut = Duxx 0 < x < l , t > 0

u(x, 0) = f(x) 0 < x < l

u(0, t) = u0(t) , u(l, t) = u1(t) t > 0

(1)

Our goal is to obtain an explicit solution to this problem, with various bound-
ary conditions, along with solving the analogous wave equation problems.
Solutions will be in terms of eigenfunction series, so we need to learn the
method of separation of variables, about eigenfunction problems, and about
Fourier series. First we are going to discuss some properties associated with
the heat equation on (spatially) finite domains.

Uniqueness: First we have to have the correct setting. Let Ω = {(x, t) :
0 < x < l , t > 0}, then the closure of Ω is Ω̄ = {(x, t) : 0 ≤ x ≤ l, t ≥ 0}.
Define the set of functions C2,1(Ω) as the set of functions w(x, t) defined on
Ω̄, which are continuous on Ω̄, and wt, wx, wxx are continuous in Ω. (That is,
we do not assume derivatives are continuous on the boundary of Ω.)

Theorem: Problem (1) has at most one solution in C2,1(Ω).

Proof: Suppose u1, u2 are two solutions in C2,1(Ω). Let v := u1−u2; then
v is the solution to vt = Dvxx, 0 < x < l, t > 0, and v(0, t) = 0 = v(l, t) for

t > 0. Let V (t) := 1
2

∫ l

0
(v(x, t))2dx. Note that this function satisfies V (0) = 0

(v(x, 0) = u1(x, 0)− u2(x, 0) = f(x)− f(x) = 0), and V (t) ≥ 0 for all t ≥ 0.
Also

dV/dt =

∫ l

0

vvt dx = D

∫ l

0

vvxx dx = D{vvx|l0 −
∫ l

0

(vx)2dx}

= −D
∫ l

0

(vx)2dx ≤ 0 ,

which implies V (t) ≡ 0 for all t; so v(x, t) ≡ 0 in Ω̄→ u1 ≡ u2 in Ω̄.

Remark: Notice in the proof that problem (1) can have Dirichlet or Neumann
boundary conditions at either end for the boundary terms in the integration-
by-parts expression to drop out. With only slightly more work, uniqueness
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result follows for Robin b.c.s also.

Exercises:

1. Reconsider problem (1) again, but with the boundary condition at x = l
replaced by the Robin condition ux(l, t) + au(l, t) = u1(t), with a > 0.
Repeat the above proof for uniqueness of solution of a solution to this
new problem. Can a problem arise is a < 0? If so, does this say
anything about the parameter value from a physical standpoint?

2. Now switch the Robin condition to the left boundary, that is, reconsider
problem (1) with the left boundary condition replaced by ux(0, t) +
au(0, t) = u0(t). What must the sign of a be to guarantee uniqueness
for the Robin-Dirichlet problem?

Theorem: Consider the problem
ut = Duxx 0 < x < l , t > 0

u(x, 0) = f(x) 0 < x < l

ux(0, t)− au(0, t) = u0(t) , ux(l, t) + bu(l, t) = u1(t) t > 0

where a, b > 0 are constants. Then this problem has at most one solution in
C2,1(0, l).

Exercise: Prove as in the theorem for Problem (1), but now you will obtain

DV/dt ≤ −D
∫ l

0
(vx)2dx − bv(l, t)2 − av(0, t)2 ≤ 0. Hence, from a physical

standpoint, you must pay attention to having the correct signs on coefficients
when dealing with boundary conditions.

Remark: It is very common in the study of pdes to use functionals like V to
prove qualitative statements about solutions to pdes. The argument above
is easily generalized to multidimensional domains and to more complicated
equations. We will again see such “energy arguments” again later in the
course.

Maximum Principle for Diffusion Equations
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Theorem: If, for any T > 0, u(x, t) is continuous on Ω̄T = {(x, y) : 0 ≤
x ≤ l, 0 ≤ t ≤ T} and the satisfies the diffusion equation in ΩT = {(x, y) :
0 < x < l, 0 < t < T}, then the maximum value of u(x, t) is either on the
boundary t = 0, or on the lateral sides x = 0 or x = l; that is, the maximum
of u(x, t) in Ω is less than or equal to the maximum of u(x, t) on Ω’s parabolic
boundary.

Remark: The minimum value of u(x, t) also is on the parabolic boundary be-
cause one can apply the maximum principle to −u(x, t). There is a stronger
version of the maximum principle that asserts that the maximum cannot be
assumed anywhere inside the rectangle, but only on the parabolic boundary,
unless u is a constant.

Well-posedness
Recall that a problem is well-posed if

1. It has a solution;

2. The solution is unique;

3. The solution is stable to small perturbations in boundary data.

We have just covered property #2 for a problem like (1), and most of what
we do from here on in the course is concerned with property #1, so we now
discuss property #3 in a couple of ways.

Stability “in the square-integral sense”
Again consider two solutions u1 and u2 to the equation in (1), and for sim-
plicity and illustration here assume they agree on x = 0 and on x = l, but at
t = 0, u1(x, 0) = g1(x), u2(x, 0) = g2(x). Remember, our goal here is to give
you a sense of what stability means in this context without overwhelming
you with generality. Again let v ≡ u1 − u2 and V (t) = 1

2

∫ l

0
(v(x, t))2 dx. As

we showed in the uniqueness argument, V is nonincreasing (V (t) ≤ V (0)),
so ∫ l

0

(v(x, t))2dx ≤
∫ l

0

(v(x, 0))2dx→∫ l

0

(u1(x, t)− u2(x, t))2dx ≤
∫ l

0

(g1(x)− g2(x))2dx .
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The right-hand side of this inequality measures relative error between the
initial data for the two solutions, while the left-hand side measures the dif-
ference in solutions at a later time. Hence, in this square-integral sense, two
solutions that “start near each other” stay near each other.

Stability “in uniform sense”
The maximum/minimum principle also shows stability, but with a different
way for measuring it.

Consider two solutions u1 and u2 to problem (1) with different initial con-
ditions as above. Let v = u1−u2; then v(x, t) ≤ maxΩ̄|g1(x)−g2(x)|. By the
minimum principle, v(x, t) ≥ −maxΩ̄|g1(x)−g2(x)|. That is, maxΩ̄|u1(x, t)−
u2(x, t)| ≤ max0≤x≤l|g1(x)− g2(x)|, for all t > 0.

Now return to problem (1) and consider some special cases before tack-
ling the general problem.

Example 1: u0, u1 are constants
In this case we look for a steady state solution, which can also be called an
equilibrium solution or time-independent solution. Thus, let u(x, t) = U(x).
The importance in such a solution is the hope that u(x, t)→ U(x) as t→∞,
and so U takes on the dominant behavior of the solution as time increases.
Put another way, if we write u(x, t) = U(x) + v(x, t), then v becomes the
transient part of the solution, and v(x, t)→ 0 as t→∞ for all x, which we
show later. U being the steady state means it satisfies

0 =
d2U

dx2
0 < x < l , U(0) = u0, U(l) = u1 .

This trivial ODE gives U(x) = Ax + B, and substituting in the boundary
conditions gives U(x) = (u1−u0

l
)x+ u0. Substituting u(x, t) = U(x) + v(x, t)

into (1) gives

ut = 0 + vt = D(U ′′ + vxx) = Dvxx , that is

vt = Dvxx , 0 < x < l , v(0, t) = 0 = v(l, t), for all t > 0,

with v(x, 0) = f ∗(x) := f(x)− U(x) .
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Figure 2: Expected behavior of Example 1 as t→∞.

Comment: We will see later that as t → ∞, v → 0 (uniformly in x). This
convergence is exponentially fast, so after a short time, u “forgets” about
the initial distribution f , and essentially all solution information is in the
steady state solution. Figure 2 depicts this behavior. This is rather difficult
to appreciate in viewing the above relatively elementary problem, but in
more complicated modeling situations, the questions you might want to know
might be answerable in just examining steady state behavior. For example,
if instead we are faced with the three-dimensional problem

ut = ∇2u = uxx + uyy + uzz for (x, y, z) ∈ Ω ⊂ R3 , t > 0

u(x, y, z, t) = h(x, y, z) for (x, y, z) ∈ ∂Ω = boundary of Ω

u(x, y, z, 0) = f(x, y, z) for (x, y, z) ∈ Ω

the same comment holds and thus, after a short time, u converges to the
Dirichlet problem for Laplace’s equation,

∇2U = 0 in Ω
U(x, y, z) = h(x, y, z) for (x, y, z) ∈ ∂Ω

which is generally easier to solve.

Remark: In Figure 2 we have indicated that f(0) = u0 (but f(l) < u1).
In general, if one has, say for problem (1), limt→0 u0(t) = limx→0 f(x), and
limt→0 u1(t) = limx→l f(x), these are called compatibility conditions, and
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if one has them, the boundary condition all around the parabolic boundary
is continuous. For the heat equation, and parabolic equations in general,
non-continuous boundary data does not cause much problem because of the
following

Smoothness Theorem: Let u(x, t) be a solution of ut = Duxx for x ∈ (0, l),
t ∈ (0, T ), for any T > 0. Then, u(x, t) is infinitely differentiable with re-
spect to both x ∈ (0, l) and t ∈ (0, T ), and for each fixed t, u is an analytic
function of x in its domain.

However, if the wave equation replaces the heat equation in this discus-
sion, then, as we indicated with our discussion of the wave equation on the
semi-infinite domain, a discontinuity in boundary data will be propagated
along characteristics and is reflected back and forth between boundaries.

To solve problem (1) via separation of variables method, we must make
such a transformation to homogeneous boundary conditions, or else the
methodology does not work. To emphasize, in our strategy to solve our
problem, the first step in the solution process is to transform the problem to
one with homogeneous b.c.s if it does not already have them.

Example 2: u0 = u0(t), u1 = u1(t) in (1); unless u0(t), u1(t) converge to
constants as t → ∞, we do not have a steady state solution because of the
t dependence, but we still have to abide by our previous comment about
transforming to homogeneous boundary conditions. So write

u(x, t) = p(x, t) + v(x, t)

and choose any continuously differentiable function p that satisfies the bound-
ary conditions. (For our specific case this means p(0, t) = u0(t), p(l, t) =
u1(t). One can see that p(x, t) = (u1(t) − u0(t))(x/l) + u0(t) works). Then
v(x, t) must be a solution to the problem

vt = Dvxx + F (x, t) 0 < x < l, t > 0

v(x, 0) = f ∗(x) := f(x)− p(x, 0) 0 < x < l

v(0, t) = v(l, t) = 0 t > 0

(2)
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where F (x, t) = Dpxx(x, t) − pt(x, t). In our special example case, F =
−pt = −du0

dt
− x

l
(du1

dt
− du0

dt
), but I am also presenting a general methodology.

So we have converted a problem for u that has a homogeneous equation, but
non-homogeneous b.c.s into a problem for v that has a non-homogeneous
equation, but homogeneous b.c.s. That is ok because our solving technique
can deal directly with the v problem (2).

Remark: Whether we have Dirichlet or Neumann b.c.s on either end of
the interval domain, p being at most quadratic in x will work. For ex-
ample, if our boundary conditions are ux(0, t) = u0(t), u(l, t) = u1(t),
then we can use p(x, t) = (u1(t) − lu0(t))(x/l)2 + u0(t)x. We can also use
p(x, t) = u0(t)(x− l) + u1(t).

Example 3: Neumann boundary conditions

ut = Duxx 0 < x < l, t > 0

u(x, 0) = f(x) 0 < x < l

ux(0, t) = 0 = ux(l, t) t > 0

Now we have changed our boundary conditions from the previous example,
so again seek a steady state solution u(x, t) = U(x). Then upon substituting
into the equation and boundary conditions, we have U satisfying

0 = d2U
dx2 , 0 < x < l

dU
dx

(0) = 0 = dU
dx

(l)

Hence, U(x) = Ax + B, but dU/dx = A = 0, so U(x) ≡ B, and arbitrary
constant. But does this mean that there is an infinite number of solutions?
We will find out later through Fourier series techniques that this is not the
case, but we can informally determine what B should be without resorting
to such techniques. Let us view the problem as a model again. We have a
thin rod, insulated on each end, and on the lateral sides. The equation is
homogeneous, we have no heat sources (or sinks), so the only dynamics is to
redistribute the initial heat distribution according to Fourier’s law. If we wait
long long enough, we expect the temperature through the rod to be uniform.
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That is consistent with U(x) ≡ B. Since we neither add or subtract heat
energy, we have to live with what we have initially, so the final temperature
should be an average of what we start with. Another way to look at this is
to let E(t) =

∫ l

0
u(x, t)dx, and think of E as proportional to the total energy

at time t. Then

dE

dt
=

d

dt

∫ l

0

u(x, t)dx =

∫ l

0

∂u

∂t
(x, t)dx = D

∫ l

0

∂2u

∂x2
(x, t)dx

= D
∂u

∂x
(x, t)|l0 = 0

so E(t) = constant with respect to t > 0. (This is a formal calculation
because we have not justified interchanging differentiation and integration,
but it turns out to be ok because of the smoothness of the solution u.) So,
again informally,

E = lim
t→∞

∫ l

0

u(x, t)dx =

∫ l

0

lim
t→∞

u(x, t)dx =

∫ l

0

U(x)dx = Bl

while

E = lim
t→0

∫ l

0

u(x, t)dx =

∫ l

0

lim
t→0

u(x, t)dx =

∫ l

0

f(x)dx .

Therefore, B = 1
l

∫ l

0
f(x)dx = average of f(x) on (0, l). Thus, u(x, t) =

(1/l)
∫ l

0
f(y)dy + transient part of the solution.

Summary: Know the different boundary conditions. Know the maximum
principle and smoothness result for heat equation solutions. Since, to solve
IBVPs we will need problems with homogeneous boundary conditions, you
need to know how to transform a problem with non-homogeneous b.c.s to
one with homogeneous b.c.s.

Exercises
For the following problems 1-4 with non-homogeneous boundary conditions,
write u(x, t) = p(x, t) + v(x, t) and determine a p(x, t) that satisfies the
boundary conditions, then write out the problem v(x, t) satisfies if u satisfies
the given problem.
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1. 
ut = Duxx 0 < x < l , t > 0

u(x, 0) = f(x) 0 < x < l

ux(0, t) = 1 , u(l, t) = 2 t > 0

2. 
ut = uxx 0 < x < 1 , t > 0

u(x, 0) = f(x) 0 < x < 1

u(0, t) = 1 , ux(1, t) = 2e−t t > 0

3. 
ut = Duxx 0 < x < l , t > 0

u(x, 0) = −1 0 < x < l

ux(0, t) = u(0, t)− 1 , ux(l, t) = 0 t > 0

4. 
ut = 4.3uxx 0 < x < 2 , t > 0

u(x, 0) = 0 0 < x < 2

ux(0, t) = u0(t) , u(2, t) = u1(t) t > 0

5. In the theory of combustion and explosions, the heat energy release T in
a circular cylinder of radius r = a and held at temperature T0 at r = a
satisfies, under some restrictive assumptions, a model for u = T − T0

of the form
1

k

∂u

∂t
=
∂2u

∂r2
+

1

r

∂u

∂r
+ qepu ,

where p, k, and q are positive constants. This is a rather unpleasant
nonlinear pde because of the epu term. If we first look for a steady
state solution, u = u(r) only, the model with boundary conditions
becomes

d2u
dr2

+ 1
r
du
dr

+ qepu = 0 0 < r < a

u(a) = 0 , du
dr

(0) = 0 radial symmetry condition
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We want to solve this nonlinear ODE up to an integration constant.
(Because it is a nonlinear equation we should not expect a unique
solution.)

(a) First let v = r du
dr

and obtain the equation for v, that is,

d

dr
(
1

r

dv

dr
) =

p

2r2

d

dr
(v2) .

Hence,
p

2

d

dr
v2 = r2 d

dr
(
1

r

dv

dr
) (3)

(b) Use the fact that r2 d
dr

(1
r
dv
dr

) = d
dr

(r dv
dr
−2v), and substitute this into

(3), and integrate the equation. The boundary condition v(0) = 0
forces the constant of integration to be 0.

(c) Show that you can separate variables on this new equation to
obtain ( 1

v
− p

pv+4
)dv = 2dr

r
. Upon integrating, obtain

v =
4Cr2

1− pCr2
.

(d) u should be decreasing from r = 0 to r = a; that is, du
dr
< 0, which

will imply v < 0. For convenience, write C = −A < 0, so that
v = r du

dr
= − 4Ar2

1+pAr2
. Now integrate this equation again and use

the boundary condition u(a) = 0 to obtain

u(r) =
2

p
ln(

1 + pAa2

1 + pAr2
).

So the steady state temperature has the form T (r) = −2
p

ln(1 +

pAr2) + T0 + 2
p

ln(1 + pAa2).
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